
Preferential trapping on energy landscapes in regions containing deep-lying minima: The

reason for the success of simulated annealing?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 2367

(http://iopscience.iop.org/0305-4470/30/7/018)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 2367–2389. Printed in the UK PII: S0305-4470(97)77815-6

Preferential trapping on energy landscapes in regions
containing deep-lying minima: The reason for the success
of simulated annealing?

J Christian Scḧon
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Abstract. Evidence has been accumulating that many complex systems are characterized by
energy landscapes that contain many pockets with exponentially growing densities of states.
Such pockets possess characteristic trapping temperatures,Ei , such that random (Monte Carlo)
walkers on such surfaces will be caught in the pockets, ifT < Ei . It will be shown that the
walkers are trapped preferentially in basins containing the deep-lying minima. This observation
might serve as an explanation of simulated annealing’s success to deliver good suboptima in
spite of the use of optimization times far less than those times for which convergence of the
algorithm has been proven. Furthermore, preferential trapping might also be involved in certain
physical processes, e.g. the glass transition.

1. Introduction

Since its invention by Kirkpatricket al [1] and Czerny [2] simulated annealing has
indubitably become one of the most successful global optimization methods, with
applications ranging from classical combinatorial optimization problems to the study of
complex energy landscapes in physics, chemistry, biology, etc [3]. Nevertheless, this
success becomes a major puzzle, when one tries to understand the actual mechanisms of
simulated annealing. The heuristic argument usually employed starts with the observation
that classical Monte Carlo (MC) simulations using the Metropolis criterion [4] sample the
whole state space according to a Boltzmann distribution. Thus, the system will reach the
global minimum, once the temperature has been slowly reduced to zero. Following this line
of argument, Geman and Geman [5] have derived a temperature schedule that ensures this
desired outcome of the optimization:

T (t) = A/ ln(t + 1) (1)

whereA is a constant corresponding to the largest relevant energy barrier of the energy
landscape. This result has been elaborated further by several authors [6–10] using the
theory of (inhomogeneous) Markov chains to obtain necessary and sufficient conditions for
the convergence to the Boltzmann distribution asT goes to zero.

However, practically no one uses this kind of schedule in actual optimization problems,
since the time required is usually not available. Instead, empirical and semi-empirical
schedules are employed [10–20], where the system tends to be quite far from equilibrium,
especially at low temperatures. Thus, ergodicity (on time scales less than the available
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computation time) is broken below some critical temperature(s), and the system is trapped
in some local basin of the energy landscape, which cannot be left within the remaining
computation time. But in spite of this breakdown of the basic assumptions that underlie
the standard view of why simulated annealing is successful, the optimizations result in very
convincing suboptima. It would therefore be tremendously helpful for the design of efficient
temperature schedules to gain information about how typical features of systems of interest
are related to the performance of the algorithm.

Certain processes must clearly take place that channel the walker on the energy landscape
of typical systems into the right basins, i.e. the ones containing the deepest minima. One
possible attempt at a simple explanation might start with the assumption that there exists
a single critical temperature,Tc, analogous to a glass transition temperature. Below this
temperature, ergodicity is broken and the walker will be caught in the basin that possesses
the highest number of states on the current ‘energy level’ of the walker. If now the basins
with the largest rims (surfaces) were also the deepest ones (‘large-rims-have-deep-wells’†),
the walker would, with high probability, end up in the ‘right’ basin. While both the selection
according to rim size and the ‘large-rims-have-deep-wells’ hypothesis are assumptions that
are too severe to be fulfilled by general or even typical energy landscapes, they point to the
need for further investigations of the mechanisms of trapping and breaking of ergodicity,
together with the identification of characteristic features of complex energy landscapes.

Following this general line of argument, we propose in this paper that the cause of
simulated annealing’s success might be found in certain characteristic properties of the
energy landscape itself. Evidence has been accumulating over the past few years that many
complex systems showing broken ergodicity possess multiminima energy landscapes, where
the local density of states near deep-lying minima grows exponentially [26–28]. As we will
show, this exponential growth can lead to a selection towards very deep-lying minima during
the optimization, i.e. the random walker gets preferentially trapped in basins that contain the
deepest local minima, even though the number of surface states might favour some other
basin.

In section 2, exponentially growing densities of states and their importance for trapping
are discussed. Section 3 describes how the selection biased towards deep basins takes place
and analyses the competition between two pockets. Finally, these results are applied to the
annealing of multipocket landscapes, followed by a summary and a discussion of possible
implications of preferential trapping in physical systems.

2. Exponentially growing densities of states

In the past four years, a number of multiminima systems have been investigated using
the so-called lid [26] or threshold algorithms [29], which allow the complete or statistical
enumeration of all states within a pocket of phase space close to a deep-lying minimum
(only states that can be reached from this minimum without crossing a prescribed lid are
considered). All those among the systems studied, which are classically expected to show

† This phrase is an inversion of the so-called ‘deep-wells-have-large-rims’ hypothesis [21], which was used to
indicate that energy landscapes with singular holes (e.g. the (in)famous hole-on-a-golf-course problems [22–24])
should be excluded from the analysis. Called originally the ‘inverse isoperimetric inequality’, it states that the
depth of a basin should be a monotonic function of the minimal ‘diameter’ and thus result in a lower bound on
the size of the basin’s rim as a function of the depth. It has been shown by Salamon and co-workers [25] that the
inverse isoperimetric inequality holds true forRn and some NP-complete problems (travelling-salesman problem,
graph partitioning). The additional assumption that the deepest wells might actually have the largest rims has
developed later in trying to understand the mechanism of simulated annealing.
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broken ergodicity and some kind of ‘glass transition’—the travelling salesman problem [26],
spin glasses [27], and a lattice approximation to a real glass [28]—exhibited exponential
growth of the local density of states near the deepest minima:

gi(E) = Ci exp((E − E0
i )/Ei) for E ∈ [E0

i , E
t
i ] (2)

where E0
i is the energy at the bottom of the basin andDi = Eti − E0

i its depth.
If one considers such a pocket in isolation, one can easily calculate its statistical and
thermodynamic properties. Of special interest in the following are the expectation values
of the energy and its square within basini:
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Here,α = (1/Ei − 1/T ). We notice that forT � Ei ,
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which forDi � Ei becomes〈E〉i ≈ Eti − Ei . In the same limits,

〈E2〉i ≈ E2
i + (Eti − Ei)2 (5b)

and thus

σi =
√
〈E2〉i − 〈E〉2i ≈ Ei. (5c)

Similarly, we find forT � Ei ,

〈E〉i ≈ E0
i + T (6a)

and

〈E2〉i ≈ T 2+ (E0
i + T )2⇒ σi ≈ T . (6b)

Finally, for T = Ei(⇔ α = 0),

〈E〉i = Eti + E0
i

2
(7a)

and

〈E2〉i = (Eti )
2+ (E0

i )
2+ EtiE0

i

3
⇒ σi = 1√

12
(Eti − E0

i ). (7b)

As an illustration, we have plotted〈E〉i in figure 1 (Ci = 1, Eti = 10,E0
i = 0, Ei = 1).

At T = Ei , some phenomenon akin to a phase transition occurs [26]. ForT > Ei , the
pocket is nearly invisible (independent of its depth!), while forT < Ei , the barrierDi � T

needs to be crossed in order to leave the pocket at all, where the time scale of escape is
now controlled by an Arrhenius factor exp(−Di/T )†. Thus for temperatures belowEi , the

† If Di ≈ Ei , the pocket is usually irrelevant, since it contains only aboutCi states. For very large values
of Di(≈ Ei), we are dealing with a very steep but extremely narrow hole—a situation analogous to the golf-
hole problem, which is a counter example to essentially all types of optimization techniques that aim to be an
improvement over random search.
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Figure 1. Plot of 〈E〉i as a function of temperature, for a pocket with an exponentially growing
density of states (Ci = 1, Eti = 10,E0

i = 0, Ei = 1).

walker is essentially trapped in the pocket: the ergodicity of the system is broken on the
time scale of the optimization forT < Ei . Note that in the limitDi →∞, 〈E〉i exhibits a
discontinuous jump at the trapping temperatureEi .

The concept of exponentially growing densities of states is a familiar one in the context
of (doped) amorphous semiconductors [30]. There, the so-called band tails appear to
exhibit an exponential growth of the electronic density of states within the band gap up
to the conduction band for example [31, 32]. The dispersive charge transport in such
semiconductors [33] has been modelled successfully by Scher and Montroll [34] as a
trapping and emission process of the charge carriers, using a power-law distribution for
the hopping times. It has been shown that such a distribution can be derived from the
assumption of an exponential distribution of traps [35–37]. To avoid possible confusion
with this kind of ‘exponential trapping’, we would like to point out certain differences to
the trapping of random walkers on energy landscapes that we discuss in this paper.

(i) The exponential growth in the semiconductor refers to the global density of states.
In general, these states will not be neighbours on the energy landscape (except through
quantum mechanical tunnelling), since they tend to be spatially localized (inR3). Thus
each such state is essentially a trap in its own right, with an associated local density of
states, probably somewhat similar to the one of an isolated hydrogen-like atom, i.e. the
local density of states does not grow exponentially†.

(ii) Consequently, the reason for trapping in semiconductors isnot some critical
temperature,Tc, connected to the exponential growth in the local density of states, and
the trap isnot invisible aboveTc, independent of its depth. Instead, the depth,D, of the
trap is large compared to the temperature of the system, leading to an Arrhenius factor
exp(−D/T ) that controls the escape out of the trap, i.e. the trap is always present and
noticeable, but it will only capture the carriers forT < D.

† Often, these traps may be described as small localized polarons or hydrogen-like states with a large dielectric
constant.
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3. Competition between two exponential traps

3.1. Two traps joining at their rims without additional barriers

In order to analyse a system consisting of many pockets with different depths,E0
i , and

trapping temperatures,Ei , we first consider a double-basin landscape with two basins
characterized byE0

i , Eti , Ei , Ci , i = 1, 2 (E1 < E2, for definiteness). Let us assume
that the prefactors are about equal,C1 ≈ C2. This assumption is not critical, since we
are dealing with exponentially growing densities of states. Furthermore,Et1 = Et2 = Et

(= 0, for definiteness), and there should be no additional barriers separating the two pockets
(figure 2). The caseEt1 6= Et2 will be discussed in section 3.2.

Figure 2. Sketch of the energy landscape,E(Ex), of two pockets characterized byE0
i , Eti , Ei ,

Ci(= 1), i = 1, 2 with exponentially growing densities of states joined at their rim(Et1 = Et2).
The growth factors,Ei(E1 < E2), are indicated by the slopes of the cones.

For T > E2 > E1, both basins will be invisible, and the system will approximately be
in equilibrium, i.e. the walker samples the available phase space according to a Boltzmann
distribution. This will change atT = E2, since now the second basin can trap the walker.
If the walker has not been trapped untilT reachesE1, however, it will end up in basin 1
instead. It appears reasonable to fix the ‘critical’ moment atT = E2, since the trapping
power of basin 1 will increase asT is lowered towardsE1 (clearly, some additional flow
of probability will occur from basin 1 into basin 2 whileT ∈ [E1, E2], for a somewhat
more detailed discussion of this issue, we refer to section 3.4). Thus, we will calculate the
expected probabilities to be in basins 1 and 2,p1 andp2, respectively, assuming that the
system is in thermodynamic equilibrium atT = E2:

A = p2(T = E2) = D2C2

Z
exp

(
D2

E2

)
= D2

Z
gs2 (8a)

and

B = p1(T = E2) = E1E2

E2− E1

C1

Z
exp

(
D1

E1

)[
1− exp

(
D1(E2− E1)

E1E2

)]
≈ E1C1

Z
exp

(
D1

E1

)
= E1

Z
gs1 (8b)

whereZ is the sum over states and acts as a normalization factor. Heregsi is the density of
states at the surface of basini (recall thatEti = 0, by definition). Clearly, ifA � B, then
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the walker is trapped in basin 2, while ifA � B, the walker remains ‘free’ and will end
up in basin 1 whenT = E1. We see that the ratio of surface states still enters, but it has
to be compared to the ratio of the depth of the more slowly growing basin to the growth
factor of the fast-growing one.

The conditionA ≶ B can be recast by taking the logarithm (for the purpose of the
qualitative analysis, we setC1 = C2, thus ln(C1/C2) = 0). Defining

f = D1/E1−D2/E2 = ((1+ a)− 1/(1+ b))(D2/E1) = m(D2/E1) (9a)

wherea = (D1−D2)/D2 andb = (E2− E1)/E1, and

g = ln(D2/E1) (9b)

we get the conditionf ≶ g for trapping into basins 1 and 2, respectively. By assumption,
b > 0 and−1 < a < ∞; anda ≶ 0 is equivalent toD1 ≶ D2. In figure 3, we show for
three different values ofD2/E1 the curvef = g in the (a, b)-plane. The full curve is for
a ‘typical’ value†, D2/E1 = 10, while the broken curves are the extreme locations of this
curve,D2/E1 = e (upper curve) andD2/E1 = 1,∞ (lower curve).

Figure 3. Plot of f = g in the (a, b)-plane, withf = D1/E1 −D2/E2 = ((1+ a) − 1/(1+
b))(D2/E1), equation (9a), andg = ln(D2/E1), equation (9b), for several different values of
D2/E1 = 1,∞ (lower broken curve),D2/E1 = e (upper broken curve), andD2/E1 = 10 (full
curve). For a given value ofD2/E1, trapping into basins 1 and 2 occurs above and below the
corresponding line, respectively. Exclamation (question) marks indicate whether this constitutes
a positive (negative) outcome of the annealing.

We have marked the basins where the walker ends up with (!) and (?), in order to indicate
whether this outcome is the desired one or not, respectively. We see that the system chooses
the wrong basin for small values ofb and small positive values ofa, and larger values of
b and small negative values ofa. Note that ifb → ∞ andD1 → 0 (a → −1), we are
dealing with the ‘golf-hole’ problem.

† Judging by the growth factors in the TSP problem [26] and the network glasses [28] for example, typical values
of D2/E1 appear to be in the range 10–100.
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Finally, we consider the caseE1 = E2 = E′, andD2 > D1. Now, we find for the
expected probabilities:

A = p2(T = E′) = D2C2

Z
exp

(
D2

E′

)
= D2

Z
gs2 (10a)

and

B = p1(T = E′) = D1C1

Z
exp

(
D1

E′

)
= D1

Z
gs1. (10b)

Clearly, the walker will be trapped in the deeper of the two basins (basin 2). Since only
one trapping temperature,E′, exists (andEt1 = Et2), the trapping power of the basins is
completely controlled by the number of surface states. Note that due toE1 = E2 and
Et1 = Et2, the ‘large-rims-have-deep-wells’ hypothesis holds in this situation.

3.2. The influence of barriers(Et1 6= Et2)
We now turn to the case thatEt1 6= Et2, and to the possibility that there might exist an
additional (effective) energy barrier between the pockets. It is important to realize that for
T > E1,2, these effective barriers refer to the energy differences between the top of the
exponential pockets and the saddle connecting the two regions that contain these pockets,
not to the differences between the saddle and the bottom of the basins. For simplicity, we
set the energy of the saddle point(s) to zero (⇒ the heights of the two barriers become
−Et1 and−Et2). Furthermore, we assume that the subexponential growth (e.g. a power-law
growth) in the part of each of the two separate regions that lies between the surface of the
actual basin and the saddle be such that the expectation value of the energy for each region
(local equilibration) atT � E1, E2 is given by〈E〉1,2 ≈ Et1,2 +O(T ). This assumption is
fulfilled in many standard systems.

Clearly, as long asT > −Et1,2, the two regions will be in equilibrium, and we find for
the ratio of the probabilities to be in the regionspi , approximately:

p1/p2(T ) ≈ (Ns
1/N

s
2) exp(Dt/T ) (11)

whereNs
i ∝ gsi ∝ exp(Di/Ei) is the number of states at the surface of basini, and

Dt = Et1− Et2 is the difference between the two barriers.
If the temperature,T , falls substantially below the barrier heights,−Et1,2, the walker

will be unable to cross the barrier in either direction, and will thus end up in the basin at the
bottom of its current region. We are, therefore, dealing with a barrier crossing problem, and
the choice of the walker will be determined by the ratio of the number of states,Ns

1/N
s
2,

and some Boltzmann factor,W = exp(Dt/Teff), whereTeff is the freeze-in temperature
relevant for a given situation. To estimateTeff, we can define an ‘Arrhenius’ temperature
Tmax = max(−Et1,−Et2), above which the equilibrium formula (equation (11)), can be
assumed to hold. Furthermore, we can define a cut-off temperatureTmin = min(−Et1,−Et2),
below which no communication between the pockets takes place. But forT ∈ [Tmin, Tmax],
there still exists some flow of probability from the high-lying basin to the lower one, possibly
even a rather substantial one ifTmin is very small and the number of relaxation steps per
temperature,Nsteps, is large. Thus, the exact value ofTeff is difficult to choose, similar to the
caseT ∈ [E1, E2] in the previous subsection. In addition, the temperature, where ergodicity
is broken, depends on the time available for equilibration, of course. In section 3.4, we will
discuss this issue in somewhat more detail. But, as we will see in the following discussion,
the actual choice ofTeff is not critical in a qualitative sense, since it should definitely lie
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Figure 4. Sketch of the energy landscape,E(Ex), of two pockets characterized byE0
i ,

Eti (Di = Eti − E0
i ), Ei , Ci(= 1), i = 1, 2 with exponentially growing densities of states

joined at a saddle point at energyEB(Et1 > Et2,D
t = Et1 − Et2). The growth factors,Ei , are

indicated by the slopes of the cones. (a) D1 > D2 +Dt ; (b) D1 6 D2.

betweenTmax and Tmin. We can distinguish three possible situations, (i)Teff < E1,2, (ii)
−Et1,2, Teff � E1,2, and (iii) −Et1 6 E1,2� −Et2.

(i) Teff < E1,2. Here, the barrier is irrelevant, since trapping occurs before the barrier
can have an influence, and the results of the previous subsection apply.

(ii) −Et1,2, Teff � E1,2. The exponential trapping mechanism described in the previous
subsection does not apply, and only the states on the surface of each basin are of importance,
according to equation (11). But, because of the exponential growth within each pocket, the
Boltzmann factor does not dominate the ratiop1/p2 in equation (11). For definiteness, let
us takeEt1 > Et2.

First, we consider case (iia):D1 > D2+Dt (figure 4(a)). If now E1 < E2 or E1 ≈ E2,
thenD1/E1 − D2/E2 − Dt/Teff > 0. Thus it follows from equation (11), that the walker
will end up in basin 1, as desired. If on the other handE1 � E2, the combination of the
larger number of surface states in basin 2 together with the Boltzmann factor wins, and
the walker ends up in the ‘wrong’ basin. Note that the latter situation is similar to a deep
golf hole on top of a mountain†, a situation extremely unfavourable to any optimization
algorithm.

Next, there is case (iib):D1 6 D2 (figure 4(b)). If now E1 > E2, E1 ≈ E2, then

† Popularly called ‘Stillinger’s nightmare’ [38].
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D1/E1 −D2/E2 −Dt/Teff < 0. Therefore, the walker ends up in basin 2, which again is
the desired one. If on the other handE1 � E2, the right basin (basin 2) is not found, but
the Boltzmann factor succeeds in negating some of the effect of the overwhelmingly large
value forNs

1. This is similar to the usual golf-hole problem discussed in section 3.1.
Finally, we haveD1 ≈ D2 +Dt . This case need not be considered, since both basins

have approximately the same minimum value for the energy, and thus either choice is
satisfactory for our purpose.

The third possibility is case (iii),−Et1 6 E1,2� −Et2. Now, the exponential trapping of
basin 1 becomes relevant, before the temperatureTmin(= −Et1) has been reached. It appears
reasonable to useTeff ≈ E1 in the expression forW . The discussion of the different cases
is analogous to the one for case (ii). The results of this section are summarized in table 1.

Table 1. Most likely final locations of the simulated annealing walker for different combinations
of effective energy barriers,−Et1,2(Dt = −Et2+Et1 > 0), and freeze-in temperatures,Teff, depths
of the exponential part of the pockets,D1,2, and growth factors (trapping temperatures),E1,2.
Exclamation (question) marks indicate a positive (negative) outcome of the annealing.

−Et1,2, Teff � E1,2 Et1 6 E1,2 � −Et2
D1 > D2 +Dt E1 < E2 basin 1 (!) basin 1 (!)

E1 ≈ E2 basin 1 (!) basin 1 (!)
E1 � E2 basin 2 (?) basin 2 (?)

D1 6 D2 E1 > E2 basin 2 (!) basin 2 (!)
E1 ≈ E2 basin 2 (!) basin 2 (!)
E1 � E2 basin 1 (?) basin 1 (?)

In conclusion, we see that the presence of high-energy barriers has the effect of mostly
eliminating the exponential trapping: the decision whether the walker is caught in the basin
with the deeper-lying surface takes place before the trap becomes active. However, the fact
that a large part of each pocket exhibits exponential growth does strongly influence both
the value of the effective freeze-in temperature and the frozen-in probability distributions at
the momentTeff is reached. SinceTeff is larger than the trapping temperatures(Teff > E1,2),
the exponential growth of the traps(Ns

i ∝ exp(Di/Ei)) can therefore often compensate
an unfavourable Boltzmann factor(W = exp(Dt/Teff)), in the sense that the probability
of the walker to be in the region of the deeper pocket at the moment when the trapping
temperature is finally reached is still very high (cf the discussion of case (iib) forE1 ≈ E2).

Furthermore, the height of the barriers is measured from the top of the exponential
pockets, leading to a reduction of the effective barrier height (and thus a decrease ofTeff)
compared with the full distance from the bottom of the basin to the saddle point. In many
situations the resulting effective barrier might be even small enough to be made irrelevant
by a computationally feasible increase inNsteps (cf figures 6 and 7 in section 3.3). Thus,
due to the exponential growth of the pockets, the presence of energetic barriers does not
completely dominate the final outcome of the annealing.

3.3. Simple illustrative examples

To illustrate the trapping mechanism, let us consider several examples of two pockets joined
at their rims, both with and without barriers. We use a discrete model where the (continuous)
landscapes are represented as tree graphs, with all the states within one energy layer of a
given pocket lumped together into a single node. For simplicity, we will chooseCi = 1
in all examples. Furthermore, we assume that the width of the layers is large enough that
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the connections between the nodes can be restricted to those nodes that are neighbours in
energy within each pocket. We can model the ‘annealing’ of such a system by constructing
a Markov matrix,M(T ), for the transition probabilities, using a procedure appropriate for
such lumped tree graphs that has been described elsewhere [29]. ApplyingM(T ) to the
initial probability distribution (probability equals one in the top state, zero elsewhere), we
get the probability distribution as a function of temperature during the annealing run.

In the first example, pocket 1 was represented by 12 nodes at energy levels
(0,−1,−2, . . . ,−11), and pocket 2 by six nodes at energies(0,−1, . . . ,−5), as seen
in figure 5(a). The top node, where the two basins joined, was given 200 000 states at the
energy level+0.1. The density of states within each pocket was characterized by(Et1 = 0,
E0

1 = −11, E1 = 2/ ln(5) ≈ 1.24) and (Et2 = 0, E0
2 = −5, E2 = 1/ ln(10) ≈ 0.43),

respectively.
In order to be somewhat realistic we have chosen a relatively fast exponential

temperature schedule,T = Tinit(f )
n, wheref = 0.9, Tinit = 5.0 andn = 30(⇒ T (30) ≈

0.21). At each temperature,M(T ) was applied 27 times, in order to allow for equilibration

Figure 5. Fast annealing of two pockets with(Et1 = 0, E0
1 = −11, E1 = 2/ ln(5) ≈ 1.24)

and (Et2 = 0, E0
2 = −5, E2 = 1/ ln(10) ≈ 0.43), respectively. (a) Sketch of the tree graph

used for the representation of the two pockets (1 and 2) and the saddle(S). Energies of the
nodes are indicated; weights can be deduced from the definition of the pockets. (b) Plot of T (n)
(full squares),Eav(n) (open squares),Eeq

av(n) (full diamonds) andz(n) = ptop(n)/p
eq
top(n) (open

diamonds;z = 1: broken curve) as a function of temperature updatesn. (c) Plot of pi(T (n))
(diamonds),peq

i (T (n)) (squares), and the probability to end up in basini upon quenching
p

qu
i (T (n)) (triangles) as a function of temperatureT (full symbols= minimum 1, open symbols
= minimum 2).
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Figure 5. (Continued)

at T > E1 = 1.24, i.e. the system could remain in equilibrium until trapping occurred.
The results are shown in figure 5. In figure 5(b), we have plottedT (n), Eav(n), E

eq
av(n)

andz(n). Here,z(n) = ptop(n)/p
eq
top(n) is a measure for the degree to which the total system

is in equilibrium [26, 29], whereptop(n) is the probability of occupation of the top node
during the simulation, andpeq

top(n) is the expected (equilibrium) value of this probability.
Furthermore,Eeq

av(n) is the expected energy, supposing the system were in equilibrium
at temperatureT (n), while Eav(n) is the actual value of the average energy during the
annealing. Figure 5(c) shows the probabilitypi(T (n)) to be in the minimum (lowest node)
of basin i during the simulation and the expected (equilibrium) probabilityp

eq
i (T (n)); in

addition, the probability to end up in the minimum of basini upon quenching at the moment
we reach the temperatureT (n), pqu

i (T (n)), is shown for comparison.
First, we notice that upon instantaneous quenching, we would end up in basin 2 with
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90% probability, while at the end of the simulated annealing run, this probability has
essentially become reversed. Next, we see that atT ≈ 1 . . .1.5, z(n) begins to grow very
rapidly, indicating that the system has dropped out of global equilibrium. Furthermore,p

eq
1

increases dramatically at this point, reflecting the fact that the bottom of the first basin is
no longer invisible, and the walker rapidly descends into this basin. A similar phenomenon
occurs atT ≈ 0.3 . . .0.5, wherep2 (not peq

2 !) increases rapidly, since now the probability
to be at the bottom of pocket 2 (given that one was somehow in basin 2 in the first place!)
grows from zero to its maximal possible value(= p

qu
2 ). We also note that at the same

moment as the second trap opens,p
qu
2 is stabilized at its current levelpqu

2 (T ≈ E2). Thus
the continuous flow of probability from basin 2 into basin 1 that took place forE1 > T > E2

has stopped.
Next, let us investigate the effect of introducing a substantial barrier. We will take

the same two pockets as before, but place the nodes of pocket 2 at the energy levels
(−8,−7, . . . ,−3), i.e. the number of surface states still strongly favours basin 2, the
trapping (if it occurs at all), takes place much earlier for basin 1(E1 ≈ 3E2), basin 1
remains deeper, and the height of the barrier is−Et2 = 3. According to table 1, this would
correspond to a situation, where the walker will most likely not find the ‘right’ basin.

The results are shown in figure 6. The expectation is borne out by the results: the
annealing fails in finding the right basin, sinceE2/E1 is too large. The number of states at
the surface of basin 2 combined with the barrier prevents the system from being present at
the top of basin 1 with a high enough probability at the moment when trapping into basin
1 can occur(T ≈ E1).

However, if one lets the system equilibrate for a longer time at each temperature, the
barrier can be climbed successfully, and the system remains in equilibrium even for some
range of temperatures belowE1. Therefore, the barrier becomes irrelevant, and the analysis
of section 3.1 applies: the system will end up trapped in basin 1, after all. This is depicted
in figure 7, where we have increased the number of equilibration steps at each temperature
to 213. The need for such a large increase is connected to the logarithmic temperature
schedule discussed in the introduction (equation (1)) and section 3.4, which is necessary to
equilibrate across a barrier. (Still, because of the exponential densities of states, the relevant
barrier is only of size 3, not 8 or even 11.) We see that trapping in pocket 1 again sets in at
aboutT ≈ 1, while the trapping in basin 2 occurs atT ≈ 0.4. The system breaks ergodicity
at aboutT ≈ 0.8, whenpeq

1 separates fromp1. Still, it would require an increase of the
number of equilibration steps to about 218 to draw nearly all walkers across the barrier into
basin 1.

Finally, in figure 8, we show the results of an annealing analogous to the previous
example (figure 6), but with a more slowly growing density of states in basin 2:(Et2 =
−3, E0

2 = −8, E2 = 1/ ln(3) ≈ 0.91). ThusE1 > E2, but notE1 � E2. Here, ergodicity
is again broken at approximately the same temperature, at which the trapping into basin 1
occurs(T ≈ 1). Although the barrier favours basin 2 somewhat (notice the dip inp

qu
1 for

T > 1), the much larger number of surface states of basin 1 compared with basin 2 ensures
that most of the probability is still concentrated at the top of basin 1 whenT drops belowE1.

3.4. Time-scale analysis

As we have seen in figures 6 and 7, the number of relaxation steps available per temperature
interval,Nsteps, can have an influence on the outcome of the annealing process. It is therefore
appropriate to address this issue and to point out the choice ofNsteps that is implied in our
analysis in sections 3.1 and 3.2.
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Figure 6. Fast annealing of two pockets with(Et1 = 0, E0
1 = −11, E1 = 2/ ln(5) ≈ 1.24)

and (Et2 = −3, E0
2 = −8, E2 = 1/ ln(10) ≈ 0.43), respectively. (a) Plot of T (n) (full

squares),Eav(n) (open squares),Eeq
av(n) (full diamonds) andz(n) = ptop(n)/p

eq
top(n) (open

diamonds;z = 1: broken curve) as a function of temperature updatesn. (b) Plot of pi(T (n))
(diamonds),peq

i (T (n)) (squares), and the probability to end up in basini upon quenching
p

qu
i (T (n)) (triangles) as a function of temperatureT (full symbols= minimum 1, open symbols
= minimum 2).

The ‘easy’ cases are of course the ones where either no time(Nsteps= 0) or practically
infinite time (Nsteps> exp((Di − Eti )/T ) is available, i.e. a quench or a full equilibration
across all barriers at every temperature, respectively. In sections 3.1 and 3.2, we have
analysed the case that presumably is a common occurrence during simulated annealing for
example, where the relaxation is slow enough to establish or maintain thermal equilibrium
at the beginning, but so fast that trapping will play a decisive role.

Let us begin by considering a number of time scales that are relevant to the flow of
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Figure 7. Slow annealing of two pockets with(Et1 = 0, E0
1 = −11, E1 = 2/ ln(5) ≈ 1.24)

and (Et2 = −3, E0
2 = −8, E2 = 1/ ln(10) ≈ 0.43), respectively. (a) Plot of T (n) (full

squares),Eav(n) (open squares),Eeq
av(n) (full diamonds) andz(n) = ptop(n)/p

eq
top(n) (open

diamonds;z = 1: broken curve) as a function of temperature updatesn. (b) Plot of pi(T (n))
(diamonds),peq

i (T (n)) (squares), and the probability to end up in basini upon quenching
p

qu
i (T (n)) (triangles) as a function of temperatureT (full symbols= minimum 1, open symbols
= minimum 2).

probability in the two-basin system. These reflect the energetic and entropic ‘effective
barriers’ that are present in the system depending on the current temperature. For
definiteness, we consider the flow of probability between the two basins forT > E1,2.
Here, the parts of the basins below the surface of the exponential region remain invisible.
There exist two energetic effective barriers,−Et1,2. These enter the Boltzmann factors that
describe the fraction of successful attempts to move from basini to the saddle region ‘S’,
located atES = 0. The entropic weight for each basin is given by the number of surface
statesNs

i ∝ exp(Di/Ei).
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Figure 8. Fast annealing of two pockets with(Et1 = 0, E0
1 = −11, E1 = 2/ ln(5) ≈ 1.24)

and (Et2 = −3, E0
2 = −8, E2 = 1/ ln(3) ≈ 0.91), respectively. (a) Plot of T (n) (full

squares),Eav(n) (open squares),Eeq
av(n) (full diamonds) andz(n) = ptop(n)/p

eq
top(n) (open

diamonds;z = 1: broken curve) as a function of temperature updatesn. (b) Plot of pi(T (n))
(diamonds),peq

i (T (n)) (squares), and the probability to end up in basini upon quenching
p

qu
i (T (n)) (triangles) as a function of temperatureT (full symbols= minimum 1, open symbols
= minimum 2).

The flow of probability from, say, basin 1 to basin 2 is best analysed by splitting it into
two effective steps,f (1→ 2) = f (1→ s)f (s → 2), where

f (1→ s) = exp(Et1/T ) (12a)

is the fraction of attempted moves that reach the saddle starting from basin 1, and

f (s → 2) = Ns
2/(N

s
1 +Ns

2) (12b)

is the fraction that reaches basin 2 from the saddle.
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Analogously, we have

f (2→ s) = exp(Et2/T ) (12c)

and

f (s → 1) = Ns
1/(N

s
1 +Ns

2). (12d)

In equilibrium, the probabilities of occupation of the two basins,pi , is found from the
equation

p1f (1→ 2) = p2f (2→ 1) (13)

which yields equation (11).
One should note that the real computation times associated with the effective MC steps

f (1→ 2) andf (2→ 1), as observed during the use of a stochastic algorithm implementing
simulated annealing, for example, in addition incorporate the ratio of possible moves within
a basin or the saddle region to those possible between the basins and the saddle. Of course,
these reflect the internal structure of the pockets and the saddle region. For our analysis,
we will ignore this additional complication.

Measured in these effective MC steps, the time scale necessary to achieve equilibrium
can be deduced by the following thought experiment. Assume all probability to be placed
initially into basin 1 (worst case). Furthermore, assume that basin 2 is an absorbing state of
the effective two-state system. Then the flow of probability per time step can be described
by a (2× 2) Markov matrix:

{M} =
{
p(1→ 1) = 1− p(1→ 2) 0

p(1→ 2) 1

}
,pn = {M}pn−1 = {M}np0. (14)

Now

{M}n =
{

(p(1→ 1))n 0
1− (p(1→ 1))n 1

}
(15a)

and forn→∞, we get

lim
n→∞{M}

n =
{

0 0
1 1

}
. (15b)

The number of steps,N(1→2), necessary to draw a substantial amount of probability from
basin 1 to basin 2 is found by setting

p(1→ 1)n = (1− p(1→ 2))n ≈ 1− np(1→ 2) = 0⇔ N(1→2) = 1/p(1→ 2). (16)

This is an analogue to the exponential decay factorλ = −p(1 → 2) one finds, if one
transforms the discrete Markov-process into a continuous one

{A} = {M} −
{

1 0
0 1

}
, ṗ = {A}p (17)

and determines the eigenvalues of{A}.
From this we find

N(1→2) = exp(−Et1/T )(1+Ns
1/N

s
2) (18a)

and analogously

N(2→1) = exp(−Et2/T )(1+Ns
2/N

s
1). (18b)

The number of steps required for equilibration at temperatureT is then given by the
larger of these two numbers,Nmax. This is an upper bound, of course, since we have
deduced this value from a worst-case analysis.
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We observe the following:
(i) If Nsteps > Nmax (= N(1→2) for definiteness), the occupation of the two basins

corresponds to the Boltzmann distribution. IfN(1→2) > Nsteps > N(2→1), it is possible
to draw substantial amounts of additional probability from basin 2 into basin 1, as long
as this moves the whole system closer to thermodynamic equilibrium. Finally, ifN(1→2),
N(2→1) > Nsteps, essentially no change takes place with regard to the occupation of the
two basins. (Depending on whetherNmax or Nmin are relevant for the continuation of the
probability flow, we can define a ‘freeze-in temperature’ of the system,Teff.)

(ii) The analysis above can be carried over to the casesE1 < T < E2 andT < E1,2.
For example, we just need to replace−Et2 by (D2+ (−Et2)) andNs

2 by the total number of
states in the basin,Nv

2 ∝ exp(D2/E2), that are now involved (recall that the effective MC
steps took redistribution moves within the basins into account).

This qualitative analysis yields table 2 forN(1→2) andN(2→1), where we assume for
definitenessE2 > E1 (for Nv,s

1 � N
v,s
2 or Nv,s

1 � N
v,s
2 , one could simplify the expressions

for N(1→2), N(2→1), of course). With the help of table 2, we can roughly analyse the time
evolution of the occupation of the two basins, for a given value forNsteps.

Table 2. Number of steps necessary to draw a substantial amount of probability from basin 1
(2) into basin 2 (1),N(1→2) andN(2→1), respectively, for different ranges in temperature and
relative sizes of the basins,Nv,s

1,2. See text for further discussion and notation.

N(1→2) N(2→1)

T > E1,2 exp(−Et1/T )× (1+Ns
1/N

s
2) exp(−Et2/T )× (1+Ns

2/N
s
1)

E2 > T > E1 exp(−Et1/T )× (1+Ns
1/N

v
2 ) exp((−Et2 +D2)/T )× (1+Nv

2/N
s
1)

T < E1,2 exp((−Et1 +D1)/T )× (1+Nv
1/N

v
2 ) exp((−Et2 +D2)/T )× (1+Nv

2/N
v
1 )

How do these considerations connect to the analysis in sections 3.1 and 3.2, i.e. which
value ofNsteps is considered there?

We begin with section 3.1. HereEt2 = Et1 = 0, and we assume thatNsteps is large
enough such that the system is in equilibrium forT > E1,2. In order for trapping to occur
for T < E2, we need to assume thatNsteps< exp(D2/T ) 6 Nmax, or else, the system would
remain in thermodynamic equilibrium. The amount of probability trapped will depend on the
time available in the temperature region betweenE2 andE1. There exist three possibilities:

(i) Ns
1 < Nv

2 . ThusNmin = 1, and there will occur a large transfer of probability into
basin 2, which is both steeper and deeper than basin 1.

(ii) Ns
1 > Nv

2 . If now (Ns
1/N

v
2 ) > exp(D2/T ) > Nsteps, there is never enough time

available to draw the probability from basin 1 into basin 2. Furthermore, the equilibrium
would favour basin 1. Depending on the value ofE1, this may be a positive outcome or
represent a golf-hole situation. This situation resembles a quench through the critical region
in temperature fromT > E2 to T < E1.

On the other hand, if exp(D2/T ) > Ns
1/N

v
2 ≈ Nsteps, there is sufficient time to shift

probability from basin 1 to basin 2. This represents the case where exponential trapping is
most likely to have an effect, i.e. where, for rather short relaxation times, the trapping into
basin 2 can overcome the effect of the much larger number of surface states in basin 1.

Clearly, afterT < E1, Nsteps< Nmin 6 exp(D2/T ), exp(D1/T ), the relaxation thus is
essentially a quench at this point.

In section 3.2, the situation is slightly more complicated, since here the effective barriers
between the basins, measured from the surface,−Et1,2, come into play.

If we chooseNstepsso large that the system remains in equilibrium until trapping occurs,
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these barriers can be ignored and the discussion of section 3.1 applies. In section 3.2, it
was thus assumed that the relaxation is so fast that the barriers are going to be relevant.
First, both were non-negligible, i.e. below an effective temperatureTeff > E1,2, Nsteps is
not sufficient to maintain the system in equilibrium. Therefore, preferential trapping cannot
occur, and the only effect of the exponential growth is seen in the combination of exponential
growth factors and basin depths that influence the ratio of the probabilities in equation (11).

Next, we treated the case where one of the barriers was negligible(−Et1 = 0). In this
caseN(1→2) continues to be small compared toNsteps, as long asT > E1. Thus, there
can exist a substantial flow of probability from basin 1 to basin 2, as long as the system
would move towards equilibrium due to this flow. Again, we dealt with fast relaxation,
i.e.N(2→1) � Nsteps(no flow from basin 2 to basin 1) for temperatures below the freeze-in
temperature for the flow from basin 2 to basin 1,Tmax.

4. The success of simulated annealing

The results of the previous section can be summarized by saying that for a landscape
consisting of two pockets with exponentially growing densities of states, which contain
the important deep-lying minima, the random walker during a simulated annealing run, for
example, is funnelled preferentially into the trap that exhibits the deepest minima. Of course,
extreme counter examples can always be constructed (e.g. golf-hole type situations), but the
net channelling effect of exponential traps compared with situations with only power-law
growth in the density of states, for example, is quite remarkable.

Using these results, we can now understand why simulated annealing works for an
energy landscape that consists of trapping pockets with exponentially growing densities of
states.

(i) For T > max(Ei), the walker does not get trapped anywhere and statistical
equilibrium is maintained, as long as the schedule allows for the crossing of possible barriers
measured from the top of the exponential pockets.

(ii) At temperatures between maximum(Ei) and minimum(Ei), trapping occurs where
a strong preference towards traps with deep-lying minima is shown.

(iii) For temperatures below the trapping temperature of the basin that has caught the
walker, the walker will only explore this pocket.

As an illustration, we have considered a simple problem consisting of four basins with
parameters(Et1 = 0, E0

1 = −11, E1 = 2/ ln(5) ≈ 1.24), (Et2 = 0, E0
2 = −5, E2 =

1/ ln(10) ≈ 0.43), (Et3 = 0, E0
3 = −5, E3 = 1/ ln(2) ≈ 1.44), and (Et4 = 0, E0

4 =
−3, E4 = 1/ ln(20) ≈ 0.33), respectively. Again, the nodes within the basins are spaced
in units of one, and the four basins are joined at the top node containing 200 000 states at
E = +0.1. We have again used the fast temperature schedule from section 3.3.

The results are plotted in figure 9. Figure 9(a) shows againT (n), Eav(n), E
eq
av(n) and

z(n), but we have only depictedpqu
i (T (n)), (i = 1, . . . ,4) in figure 9(b) in order to avoid

crowding. We notice that at the end of the annealing, the ‘right’ basin has the highest
probability, as expected. Furthermore, ergodicity is broken at aboutT ≈ 1.3, similar
to figure 5. Although pocket 4 contains slightly more surface states than pocket 1, the
former finishes last, even behind the tiny, but deep, pocket 3. We notice that the ratios of
the final quenched probabilitiespqu

1 (31)/pqu
2 (31) ≈ 11.8, andpqu

3 (31)/pqu
4 (31) ≈ 9.0 are

approximately equal; a reasonable result, since pockets 3 and 4 resemble a scaled-down
version of pockets 1 and 2.

Furthermore, figure 9(b) shows very nicely how for pockets of about equal depth (2
and 3) the one with the larger number of surface states wins, although only in a reduced
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Figure 9. Fast annealing of four pockets with(Et1 = 0, E0
1 = −11, E1 = 2/ ln(5) ≈ 1.24),

(Et2 = 0, E0
2 = −5, E2 = 1/ ln(10) ≈ 0.43), (Et3 = 0, E0

3 = −5, E3 = 1/ ln(2) ≈ 1.44), and
(Et4 = 0, E0

4 = −3, E4 = 1/ ln(20) ≈ 0.33), respectively. (a) Plot of T (n) (full squares),
Eav(n) (open squares),Eeq

av(n) (full diamonds) andz(n) = ptop(n)/p
eq
top(n) (open diamonds;

z = 1: broken curve) as a function of temperature updatesn. (b) Plot of the probability to end
up in basini upon quenchingpqu

i (T (n)) as a function of temperatureT (full squares= minimum
1, open squares= minimum 2, full diamonds= minimum 3, open diamonds= minimum 4).

fashion:pqu
2 (31)/pqu

3 (31) ≈ 31 versusgs2/g
s
3 = 3125. Finally, the comparison of pockets 1

and 3 shows that, for similar growth laws and thus similar trapping temperatures, the deeper
pocket wins, because the ‘large-rims-have-deep-wells-hypothesis’ is fulfilled and relevant:
p

qu
1 (31)/pqu

3 (31) ≈ 367 andgs1/g
s
3 ≈ 219.

Three important issues remain to be addressed with regard to this scenario:
(i) To what extent can the system be assumed to be in equilibrium atT > max(Ei)?
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(ii) To what extent does the analysis for two competing pockets apply when very many
basins are present?

(iii) What happens with the walker inside a trap?
Let us begin with the second point. If many trapping basins are present, one can group

them according to theirEi , E0
i andEti values. Then the size of each group can be taken

into account through an adjustment in the prefactorCi in the density of states. However,
since we are dealing with exponential growth laws, these prefactors will only be important
if massive imbalances among the different classes of pockets exist. As long as statistical
equilibrium can be maintained before trapping occurs, the arguments of the previous section
can be transferred to the case of many competing minima. There now exists a sequence of
trapping temperatures. If the class of traps with the highest value ofEi , e.g.E1, does not
succeed in catching the walker atT = E1, the reason will lie in the overwhelming number
of surface states of the remaining traps. Thus for temperatures belowE1, this first class
of traps drops out of the competition. This process is repeated, until the walker is finally
trapped.

It might be argued that the number of states belonging to the unsuccessful basins will
begin to mount and in the end become much larger than the number of states in the last
few competing classes of traps, leading to a contradiction. However, this argument does
underestimate the power of exponential growth, and it will only apply if the number of
different classes of basins is very large. Let us assume thatN basins with different trapping
temperaturesE1 > E2 . . . > EN exist, and that for each basini the number of states on the
surface of those pockets withEj < Ei exceeds the number of states of basini (which is
also essentially given by the number of surface states) by some large factorc. We want to
consider the extreme case that the contradiction occurs for the last basin,

gsN <

N−1∑
i=1

gsi . (19)

Then, the condition onc andN for this inequality to hold is given approximately by

(N − 1) > (c + 1) ln(c) (20)

i.e. the contradiction occurs, if the number of distinct competing basins is much larger than
the already large factorc. If the trapping were to take place earlier, i.e. at some other value
i < N , then already(i − 1) needs to be larger than(c + 1) ln(c), in order to lead to a
contradiction. Of course, one cannot exclude this possibility, but it requires that there exist
at least(c + 1) ln(c) classes of basins sufficiently different to require separate treatments.

The existence of many similar basins on the energy landscape might actually help
in addressing the first question, and explain why it often appears that the system seems
to remain in equilibrium until trapping, even though the phase space volume of the whole
landscape is gigantic and important regions are separated by relatively large barriers. Instead
of having to explore the whole energy landscape, all typical basins might be accessible
‘locally’ (without crossing large barriers), thus reducing the time necessary for accumulating
a ‘representative’ sample. Such a similarity of different regions of the energy landscape
might be a reasonable assumption in many systems, especially spin glasses and amorphous
solids.

There remains the question of what happens to the walker within the traps. This will
depend very much on the local energy landscape of the trapping basin. If this local landscape
shows but little structure, with at most small energy barriers separating the local minima,
the system will remain in thermodynamic equilibrium within the pocket and find the deepest
minimum, with high probability.
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On the other hand, one often encounters situations, where not only the number of states,
but also the number of minima grows exponentially within the pocket [26–28]! Now the
discussion of trapping in multiminima situations applies, as long as the trapping temperatures
of these sub-basins are similar to the trapping temperature of the basin as a whole. The
most problematic situations occur if these local trapping temperatures are for the most part
higher than the trapping temperature of the whole pocket. Thus, once the walker is trapped,
it falls into some local minimum, and it takes a very long time to find the global minimum
walking on the very rugged landscape within the pocket. The success of the random walk
within the pocket is then largely controlled by the barrier heights within the pocket, which
can be much higher thanEi . However, we are often not interested in the global minimum,
and a very good suboptimum is sufficient. If this is the case, then we note that the existence
of exponential growth for both minima and states to a certain degree implies that those
sub-basins with large trapping power will at the same time be rather deep. Thus, the walker
often ends up in a good suboptimum, and only the final optimization necessary to achieve
the last few per cent of improvement would require logarithmic temperature schedules for
example [5], such as equation (1), if one were to use simulated annealing for this purpose.
This is probably the reason that, for example, the lid method [39] or the related ‘bouncing’
algorithms [40, 41] appear to be more efficient in determining the global minimum of a
given pocket or improving upon a very good suboptimum. But these algorithms usually
start from an already very good suboptimum inside such a basin, which was found during
an earlier optimization run using simulated annealing for example.

In this context, one should also make a final comment on those situations encountered
in section 3 where the walker is likely to be caught in the wrong basin. In nearly all
instances, we are dealing with some variant of the ‘golf-hole’ problem [22–24], which is
specially designed to confound all optimization methods that claim to be an improvement
over random search. Since simulated annealing is known to fail for such problems, it is
reasonable to exclude these situations from our analysis, strengthening our claim that the
trapping in exponentially growing pockets with different trapping temperatures constitutes an
explanation for the success of simulated annealing on landscapes dominated by exponential
traps.

5. Summary and discussion

To summarize, we have seen that random walkers exploring energy landscapes consisting
of pockets with exponentially growing densities of states will be channelled preferentially
into those basins that contain the deep-lying minima. This observation can help explain
the success of the simulated annealing algorithm in the determination of good suboptima in
complex multiminima systems.

We would like to point out, however, that the arguments presented here are not intended
to be mathematically rigorous in the sense of the necessary and sufficient conditions on
convergence mentioned in the introduction. Since we are trying to model Markov processes
where breaking of ergodicity (on the time scale of the process) is important, and at best
local equilibrium can be maintained, the standard methods to obtain results on convergence
cannot be easily transferred. Nevertheless, as the qualitative discussion of relevant time
scales in section 3.4 indicates, the derivation of such conditions is certainly possible for
precisely defined energy landscapes and, of course, does remain an important aim.

Still, we feel that even the more qualitative approach taken here will be of use in
understanding simulated annealing. The analysis presented in this paper clearly indicates,
that a knowledge of the distribution of trapping temperatures, and the ratio of basin depth
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and exponential growth factors will allow the design of more efficient temperature schedules
for a given system, or even suggest modifications, e.g. in the moveclass (= neighbourhood
structure) employed, of the global optimization algorithm itself.

Finally, the apparently common occurrence of exponentially growing local densities
of states in models for physical systems that exhibit glass transitions provides food for
thought: might there exist some deeper connections between the trapping in exponential
pockets discussed in this paper and the (kinetically controlled) glass transition? After all,
the time evolution of a physical system in contact with a heat bath is well represented by
a random walk on an energy landscape, in a probabilistic sense.

In those systems where all important minima reside at the bottom of exponential pockets
with similar growth laws (e.g. spin glasses?), a glass transition could be identified with the
onset of trapping. The only requirement would be that the barriers above the surfaces of
the traps should not be too large to avoid that the dynamics is barrier controlled instead of
trap controlled.

Amorphous solids would be more complex, however, since the global minimum appears
to be the crystalline phase. For the ‘crystal’ region of state space, one would expect that
the growth in the local density of states would not follow an exponential function, but, for
example, would be more likely to obey a power law†. Since the trapping temperature of a
pocket with power-law growth is essentially infinite,(1/Ei → 0), crystallization will occur
very quickly once the temperature drops below the melting temperature of the material and
the walker (representing the system) is within or near the ‘crystal’ basin. But if either the
trapping temperature of the exponential pockets representing amorphous configurations is
comparable with the melting temperature, or the ‘crystal’ pocket is too small (a ‘golf-hole’
problem for nature!), the walker will be trapped in one of the amorphous regions. Of
course, these considerations do not take the influence of the barrier structure above the traps
into account—how are the exponential regions and the power-law basins welded together?
A final answer to the question, whether trapping in pockets with exponentially growing
densities of states is the cause of the glass transition, will surely require more detailed
information about the energy landscape of amorphous solids.
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[28] Scḧon J C 1997 in preparation
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